题目内容

设x,y,z∈(0,1),且x+y+z=2,设u=xy+yz+zx,则u的最大值为
4
3
4
3
分析:由题意可得 x2+y2+z2+2xy+2yz+2xz=4≥3(xy+yz+xz ),由此求得u=xy+yz+zx的最大值.
解答:解:∵x,y,z∈(0,1),且x+y+z=2,∴x2+y2+z2+2xy+2yz+2xz=4,
再由x2+y2+z2=
x2+y2+z2+x2+y2+z2
2
≥xy+yz+xz,可得
x2+y2+z2+2xy+2yz+2xz=4≥3(xy+yz+xz ),
∴u=xy+yz+zx≤
4
3
,当且仅当x=y=z时,等号成立.
故答案为
4
3
点评:本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网