题目内容
设x>y>z>0,若
+
+
≥0恒成立,则λ的最大值是( )
| 1 |
| x-y |
| 1 |
| y-z |
| λ |
| z-x |
分析:由于x>y>z>0,
+
+
≥0?
≤
+
,即λ≤
+
,应用基本不等式即可.
| 1 |
| x-y |
| 1 |
| y-z |
| λ |
| z-x |
| λ |
| x-z |
| 1 |
| x-y |
| 1 |
| y-z |
| x-z |
| x-y |
| x-z |
| y-z |
解答:解:∵x>y>z>0,
∴
+
+
≥0恒成立可转化为:
≤
+
恒成立,即λ≤
+
恒成立;
∴只需λ≤(
+
)min即可.
∵x>y>z>0,
∴
+
=
+
=2+
+
≥4.
∴(
+
)min=4.
∴λ≤4.即λ的最大值是4.
故选D.
∴
| 1 |
| x-y |
| 1 |
| y-z |
| λ |
| z-x |
| λ |
| x-z |
| 1 |
| x-y |
| 1 |
| y-z |
| x-z |
| x-y |
| x-z |
| y-z |
∴只需λ≤(
| x-z |
| x-y |
| x-z |
| y-z |
∵x>y>z>0,
∴
| x-z |
| x-y |
| x-z |
| y-z |
| (x-y)+(y-z) |
| x-y |
| (x-y)+(y-z) |
| y-z |
| (y-z) |
| x-y |
| (x-y) |
| y-z |
∴(
| x-z |
| x-y |
| x-z |
| y-z |
∴λ≤4.即λ的最大值是4.
故选D.
点评:本题考查不等式的综合,难点在于将
+
+
≥0恒成立转化为λ≤
+
恒成立;着重考查基本不等式的应用,属于难题.
| 1 |
| x-y |
| 1 |
| y-z |
| λ |
| z-x |
| x-z |
| x-y |
| x-z |
| y-z |
练习册系列答案
相关题目