题目内容

3.在△ABC中,角A、B、C的对边分别为a、b、c,满足b2+c2=a2+bc.
(1)求角A的大小;
(2)求$y=\sqrt{3}sinB+cosB$的值域.

分析 (1)利用余弦定理转化求解即可.
(2)通过两角和与差的三角函数化简函数的解析式,通过B的范围,求解函数的最值即可.

解答 解:(1)由题意得,b2+c2-a2=bc
则$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$,且A∈(0,π),所以$A=\frac{π}{3}$.
(2)原式化为$y=2sin(B+\frac{π}{6})$,$B∈(0,\frac{2π}{3})$$B+\frac{π}{6}∈(\frac{π}{6},\frac{5π}{6})$,$sin(B+\frac{π}{6})∈(\frac{1}{2},\left.1]$,
故值域为(1,2].

点评 本题考查余弦定理的应用,两角和与差的三角函数,三角函数的最值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网