题目内容
已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在函数f(x)=x2的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| an•an+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:( I)由点(n,Sn)在函数f(x)=x2的图象上,可得Sn=n2.利用递推式即可得出an;
( II)由bn=
=
=
(
-
),利用“裂项求和”即可得出.
( II)由bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)•(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:( I)∵点(n,Sn)在函数f(x)=x2的图象上,
∴Sn=n2.
∴当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又a1=1满足an=2n-1,
∴an=2n-1.
( II)∵bn=
=
=
(
-
),
∴Tn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
∴Sn=n2.
∴当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又a1=1满足an=2n-1,
∴an=2n-1.
( II)∵bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)•(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查了递推式的应用、点与函数图象的关系、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
已知数列{an}为等差数列,a5=5,d=1;数列{bn}为等比数列,b4=16,q=2.
(1)求数列{an}、{bn}的通项公式an、bn;
(2)设cn=an+bn,求数列{cn}的前n项和为Tn.
(1)求数列{an}、{bn}的通项公式an、bn;
(2)设cn=an+bn,求数列{cn}的前n项和为Tn.
已知函数f(x)=|lg(x-1)|,若a≠b,f(a)=f(b),则a+2b的取值范围是( )
A、(4
| ||
B、[4
| ||
C、(2
| ||
D、[2
|