题目内容
(2014•福建)已知函数f(x)=,则下列结论正确的是( )
A.f(x)是偶函数
B.f(x)是增函数
C.f(x)是周期函数
D.f(x)的值域为[﹣1,+∞)
设满足约束条件,若目标函数 的最大值为,则的图象向右平移后的表达式为___________.
(2012•许昌县一模)先后拋掷两枚质地均匀的正方体骰子,它们的六个面分别标有点数1,2,3,4,5,6,设骰子朝上的面的点数分别是x,y则log(2x)y=1的概率是( )
A. B. C. D.
(2013•沈河区校级模拟)若条件p:|x+1|≤4,条件q:2<x<3,则?q是?p的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既非充分条件也非必要条件
(2015•贵州模拟)已知双曲线x2+my2=1的虚轴长是实轴长的两倍,则实数m的值是( )
A.4 B. C. D.﹣4
(2012•安徽)公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=( )
A.1 B.2 C.4 D.8
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
如图,已知底角为的等腰梯形,底边长为7,腰长为,当一条垂直于底边垂足为的直线由从左至右向移动(与梯形有公共点)时,直线把梯形分成两部分,令,记左边部分的面积为.
(1)试求1,3时的值;
(2)写出关于的函数关系式.
已知数列为等差数列,,的前和为,数列为等
比数列,且对任意的恒成立.
(Ⅰ)求数列、的通项公式;
(Ⅱ)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
(Ⅲ)各项均为正整数的无穷等差数列,满足,且存在正整数k,使成等比数列,若数列的公差为d,求d的所有可能取值之和.