题目内容

16.已知函数f(x)=sin(2x+$\frac{π}{6}$)-cos2x.
(1)求f(x)的最小正周期及x∈[$\frac{π}{12}$,$\frac{2π}{3}$]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a、b、c,其中角C满足f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,若S△ABC=$\sqrt{3}$,c=2,求a,b(a>b)的值.

分析 (1)利用倍角公式、和差公式可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$.可得T=$\frac{2π}{2}$,由x∈[$\frac{π}{12}$,$\frac{2π}{3}$],可得2x∈$[\frac{π}{6},\frac{4π}{3}]$,sin2x∈[-$\frac{\sqrt{3}}{2}$,1],即可得出f(x)的值域.
(2)f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,可得$\frac{\sqrt{3}}{2}$sin(2C+$\frac{π}{2}$)-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$.化为cos2C=$\frac{1}{2}$,解得C.又S△ABC=$\sqrt{3}$,c=2,可得$\frac{1}{2}ab$sinC=$\sqrt{3}$,4=a2+b2-2abcosC,a>b,解出即可得出.

解答 解:(1)f(x)=sin(2x+$\frac{π}{6}$)-cos2x=$\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x$-$\frac{1+cos2x}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$.
∴T=$\frac{2π}{2}$=π,
∵x∈[$\frac{π}{12}$,$\frac{2π}{3}$],2x∈$[\frac{π}{6},\frac{4π}{3}]$,sin2x∈[-$\frac{\sqrt{3}}{2}$,1],∴f(x)的值域为$[-\frac{5}{4},\frac{\sqrt{3}-1}{2}]$.
(2)f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,∴$\frac{\sqrt{3}}{2}$sin(2C+$\frac{π}{2}$)-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$.
∴$\frac{\sqrt{3}}{2}$cos2C-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$,∴cos2C=$\frac{1}{2}$,
∵C∈(0,π),∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
sinC=$\frac{1}{2}$.
又S△ABC=$\sqrt{3}$,c=2,
∴$\frac{1}{2}ab$sinC=$\sqrt{3}$,4=a2+b2-2abcosC,
∴ab=4$\sqrt{3}$,4=a2+b2-2ab×$(±\frac{\sqrt{3}}{2})$,又a>b,
解得a=2$\sqrt{3}$,b=2.

点评 本题考查了三角函数的图象与性质、三角形面积计算公式与余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网