ÌâÄ¿ÄÚÈÝ
1£®Éèx¡ÊR£¬¼Ç²»³¬¹ýxµÄ×î´óÕûÊýΪ[x]£¬Èç[0.9]=0£¬[2.6]=2£¬Áî{x}=x-[x]£®Ôò{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬$\frac{\sqrt{5}+1}{2}$£¨¡¡¡¡£©| A£® | ¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁÐ | B£® | ¼È²»ÊǵȲîÊýÁÐÒ²²»ÊǵȱÈÊýÁÐ | ||
| C£® | ÊǵȲîÊýÁе«²»ÊǵȱÈÊýÁÐ | D£® | ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁÐ |
·ÖÎö ÓÉж¨Ò廯¼ò{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬È»ºó½áºÏµÈ²îÊýÁк͵ȱÈÊýÁеĸÅÄîÅжϣ®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}+1}{2}-1=\frac{\sqrt{5}-1}{2}$£¬[$\frac{\sqrt{5}+1}{2}$]=1£¬
ÓÖ${1}^{2}=\frac{\sqrt{5}-1}{2}¡Á\frac{\sqrt{5}+1}{2}$£¬
¡à$\frac{\sqrt{5}-1}{2}£¬1£¬\frac{\sqrt{5}+1}{2}$¹¹³ÉµÈ±ÈÊýÁУ¬
¶ø$\frac{\sqrt{5}-1}{2}+\frac{\sqrt{5}+1}{2}¡Ù2$£¬
¡à{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬$\frac{\sqrt{5}+1}{2}$ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁУ®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеĸÅÄÊÇ»ù´¡µÄ¼ÆËãÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®Éèµ±x=¦Èʱ£¬º¯Êýf£¨x£©=3sinx+4cosxÈ¡µÃ×îСֵ£¬Ôòsin¦È=£¨¡¡¡¡£©
| A£® | $\frac{3}{5}$ | B£® | $\frac{4}{5}$ | C£® | $-\frac{3}{5}$ | D£® | $-\frac{4}{5}$ |
9£®
ÒÑÖªº¯Êýf£¨x£©=ax3+$\frac{1}{2}$x2ÔÚx=-1´¦È¡µÃ¼«´óÖµ£¬¼Çg£¨x£©=$\frac{1}{f¡ä£¨x£©}$£®³ÌÐò¿òͼÈçͼËùʾ£¬ÈôÊä³öµÄ½á¹ûS£¾$\frac{2014}{2015}$£¬ÔòÅжϿòÖпÉÒÔÌîÈëµÄ¹ØÓÚnµÄÅжÏÌõ¼þÊÇ£¨¡¡¡¡£©
| A£® | n¡Ü2014£¿ | B£® | n¡Ü2015£¿ | C£® | n£¾2014£¿ | D£® | n£¾2015£¿ |
13£®Èô¹ØÓÚxµÄ²»µÈʽ$|{x-\frac{1}{2}}|+|{x+\frac{3}{2}}|£¼k$µÄ½â¼¯²»Êǿռ¯£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇk£¾2£®
10£®ÒÑÖª²»µÈʽx2-2ax+a£¾0£¨x¡ÊR£©ºã³ÉÁ¢£¬Ôò²»µÈʽa2x+1£¼a${\;}^{{x}^{2}+2x-3}$£¼1µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
| A£® | £¨1£¬2£© | B£® | £¨-$\frac{1}{2}$£¬2£© | C£® | £¨-2£¬2£© | D£® | £¨-3£¬2£© |
11£®ÒÑÖªÃݺ¯Êýf £¨ x £©¹ýµã£¨2£¬$\sqrt{2}$£©£¬Ôòf £¨ 9 £©µÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | 1 | C£® | 3 | D£® | 6 |