题目内容

10.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1与双曲线C2在第一象限的公共点,若|PF2|=2,则椭圆C1的离心率等于$\frac{\sqrt{2}}{2}$.

分析 利用双曲线、椭圆的定义,求出a,利用双曲线的性质,求出c,即可求出椭圆C1的离心率

解答 解:由题意,不妨设P在第一象限,
由双曲线C2:x2-y2=4的标准方程$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}=1$,则|PF1|-|PF2|=4,c=2$\sqrt{2}$
∵|PF2|=2,∴|PF1|=6,
∴2a=|PF2|+|PF2|=8,
∴a=4.
∵椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,c=2$\sqrt{2}$,
∴椭圆C1的离心率为e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查椭圆与双曲线的几何性质,解题的关键是正确运用离心率的定义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网