题目内容

已知向量
m
n
满足:对任意λ∈R,恒有|
m
-λ(
m
-
n
)|≥
|
m
+
n
|
2
,则(  )
A.|
m
|=|
n
-
m
|
B.|
m
|=|
n
|
C.|
m
|=|
n
+
m
|
D.|
m
|=2|
n
|
∵恒有|
m
-λ(
m
-
n
)|≥
|
m
+
n
|
2

两边同时平方可得,
m
2
-2λ
m
(
m
-
n
)+λ2(
m
-
n
)2
(
m
+
n
)2
4

整理可得,(
m
-
n
)2λ2-2
m
•(
m
-
n
+
m
2
-
(
m
+
n
)2
4
≥0
对任意λ都成立
△=4
m
2
(
m
-
n
)2-4(
m
-
n
)2
[
m
2
-
(
m
+
n
)2
4
]≤0
整理可得,(
m
-
n
)2(
m
+
n
)2≤0

(
m
2
-
n
2
)2=0

|
m
|=|
n
|

故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网