题目内容
4.已知$sin(π+α)=-\frac{1}{2}$(1)求sin(2π-α)
(2)求cos(2π+α)
分析 由已知利用诱导公式求出sinα.
(1)直接利用诱导公式求sin(2π-α)的值;
(2)由诱导公式及同角三角函数基本关系式求cos(2π+α).
解答 解:由$sin(π+α)=-\frac{1}{2}$,得-sin$α=-\frac{1}{2}$,即sinα=$\frac{1}{2}$.
(1)sin(2π-α)=-sinα=$-\frac{1}{2}$;
(2)cos(2π+α)=cosα=$±\sqrt{1-si{n}^{2}α}$=$±\sqrt{1-(\frac{1}{2})^{2}}=±\frac{\sqrt{3}}{2}$.
点评 本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.
练习册系列答案
相关题目
14.设f′(x)为函数f(x)的导函数,e为自然对数的底数,且xf′(x)lnx>f(x),则( )
| A. | f(2)<f(4)ln2,2f(e)>f(e2) | B. | f(2)<f(4)ln2,2f(e)<f(e2) | ||
| C. | f(2)>f(4)ln2,2f(e)<f(e2) | D. | f(2)>f(4)ln2,2f(e)>f(e2) |
19.已知sinα>0,cosα<0,则α是第( )象限角.
| A. | 第一 | B. | 第二 | C. | 第三 | D. | 第四 |
9.函数y=x2sinx导数为( )
| A. | y'=2x+cosx | B. | y'=x2cosx | ||
| C. | y'=2xcosx | D. | y'=2xsinx+x2cosx |
14.一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,x,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验.记A事件为“数字之和为7”.试验数据如下表:
(参考数据:0.33$≈\frac{1}{3}$)
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近.试估计“出现数字之和为7”的概率,并求x的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元.某人摸球3次,设其获利金额为随机变量η元,求η的数学期望和方差.
| 摸球总次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
| “和为7”出现的频数 | 1 | 9 | 14 | 24 | 26 | 37 | 58 | 82 | 109 | 150 |
| “和为7”出现的频率 | 0.10 | 0.45 | 0.47 | 0.40 | 0.29 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近.试估计“出现数字之和为7”的概率,并求x的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元.某人摸球3次,设其获利金额为随机变量η元,求η的数学期望和方差.