题目内容

6.双曲线过点(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),则双曲线的标准方程为$\frac{x^2}{4}-{y^2}=1$.

分析 由题意,设双曲线方程为mx2+ny2=1,代入点的坐标,建立方程组,求出m,n,即可求出双曲线的标准方程.

解答 解:由题意,设双曲线方程为mx2+ny2=1,代入点(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),
得$\left\{\begin{array}{l}{16m+3n=1}\\{9m+\frac{5}{4}n=1}\end{array}\right.$,
解得m=$\frac{1}{4},n=-1$.
∴双曲线的标准方程为$\frac{x^2}{4}-{y^2}=1$.
故答案为:$\frac{x^2}{4}-{y^2}=1$.

点评 本题考查双曲线的标准方程,考查待定系数法的运用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网