题目内容
17.设复数z满足(2-i)z=5i(i为虚数单位),则复数z在复平面内对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由(2-i)z=5i,得$z=\frac{5i}{2-i}$,然后利用复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.
解答 解:由(2-i)z=5i,
得$z=\frac{5i}{2-i}$=$\frac{5i(2+i)}{(2-i)(2+i)}=\frac{-5+10i}{5}=-1+2i$,
则复数z在复平面内对应的点的坐标为:(-1,2),位于第二象限.
故选:B.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
8.双曲线E与椭圆C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{3}$=1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E的离心率为( )
| A. | e=$\sqrt{2}$ | B. | e=$\frac{\sqrt{6}}{2}$ | C. | e=$\frac{\sqrt{30}}{5}$ | D. | e=$\sqrt{3}$ |