题目内容
M,N分别是四面体OABC的边OA,BC的中点,P,Q是MN的三等分点,用向量
,
,
表示
和
.
| OA |
| OB |
| OC |
| OP |
| OQ |
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:先根据向量的加法及减法用向量
,
,
表示出
:
=-
+
+
,而
=
+
,
=
+
,所以带入
即可完成解答.
| OA |
| OB |
| OC |
| MN |
| MN |
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
| OP |
| 1 |
| 2 |
| OA |
| 1 |
| 3 |
| MN |
| OQ |
| 1 |
| 2 |
| OA |
| 2 |
| 3 |
| MN |
| MN |
解答:
解:如图,
=
+
+
=-
+
+
=-
+
+
(
-
)=-
+
+
;
∴
=
+
=
+
=
+
•(-
+
+
)=
+
+
;
=
+
=
+
•(-
+
+
)=
+
+
.
| MN |
| MO |
| OC |
| CN |
| 1 |
| 2 |
| OA |
| OC |
| 1 |
| 2 |
| CB |
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| OC |
| 1 |
| 2 |
| OB |
| OC |
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
∴
| OP |
| OM |
| MP |
| 1 |
| 2 |
| OA |
| 1 |
| 3 |
| MN |
| 1 |
| 2 |
| OA |
| 1 |
| 3 |
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
| 1 |
| 3 |
| OA |
| 1 |
| 6 |
| OB |
| 1 |
| 6 |
| OC |
| OQ |
| 1 |
| 2 |
| OA |
| 2 |
| 3 |
| MN |
| 1 |
| 2 |
| OA |
| 2 |
| 3 |
| 1 |
| 2 |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
| 1 |
| 6 |
| OA |
| 1 |
| 3 |
| OB |
| 1 |
| 3 |
| OC |
点评:考查向量的加法、减法运算,以及共线向量基本定理.
练习册系列答案
相关题目
执行如图所示的程序框图,若输入n的值为8,则输出Sn=
=6n2+6n的值为( )
| n(12+12n) |
| 2 |
| A、4 | B、8 | C、10 | D、12 |