题目内容
3.已知数列{an}通项为an=$\left\{\begin{array}{l}{2n-1(n=2k-1,k∈N*)}\\{{2}^{n}(n=2k,k∈N*)}\end{array}\right.$,求它的前n项和.分析 对n分类讨论,利用等差数列与等比数列的通项公式及其前n项和公式即可得出.
解答 解:∵an=$\left\{\begin{array}{l}{2n-1(n=2k-1,k∈N*)}\\{{2}^{n}(n=2k,k∈N*)}\end{array}\right.$,
∴当n=2k时,Sn=[1+3+…+(2k-1)]+(22+24+…+22k)
=$\frac{k(1+2k-1)}{2}$+$\frac{4({4}^{k}-1)}{4-1}$=${k}^{2}+\frac{4}{3}$(4k-1).
当n=2k-1时,Sn=Sn-1+a2k-1
=k2+$\frac{4}{3}({4}^{k-1}-1)$.
∴Sn=$\left\{\begin{array}{l}{{k}^{2}+\frac{4}{3}({4}^{k}-1),n=2k}\\{{k}^{2}+\frac{4}{3}({4}^{k-1}-1),n=2k-1}\end{array}\right.$,(k∈N*).
点评 本题考查了递推关系、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
8.已知复数$z=\frac{3+i}{1-i}$,则$|{\overline z}|$=( )
| A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 5 |
15.将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位长度,所得图象关于点$({\frac{3π}{4},0})$对称,则ω的最小值是( )
| A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{3}$ | D. | 2 |
3.若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2间的距离为( )
| A. | $\sqrt{2}$ | B. | $\frac{8\sqrt{2}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{8\sqrt{3}}{3}$ |