题目内容

14.如果一个三位正整数如“a1a2a3”满足a1<a2>a3,则称这样的三位数为凸数(如120,232,354等),那么所有小于700的凸数的个数为(  )
A.44B.86C.112D.214

分析 按照中间一个数字的情况分8类,当中间数为2时,百位数字只能选1,个位数字可以选1和0,当中间数为3时,百位数字有两种选择,个位数字有3种选择,以此类推,写出其他情况,利用加法原理得到结果.

解答 解:按照中间一个数字的情况分8类,
当中间数为2时,百位数字只能选1,个位数字可以选1和0,有1×2=2种;
当中间数为3时,百位数字有两种选择,个位数字有3种选择,有2×3=6种;
以此类推
当中间数为4时,有3×4=12种;
当中间数为5时,有4×5=20种;
当中间数为6时,有5×6=30种;
当中间数为7时,有6×7=42种;
当中间数为8时,首位只有6种选择,末尾有8种选择,故有6×8=48种,
当中间数为9时,首位只有6种选择,末尾有9种选择,故有6×9=54种,
根据分类计数原理知故共有2+6+12+20+30+42+48+54=214种.
故选:D.

点评 数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网