题目内容
给出下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.
其中正确的是( )
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.
其中正确的是( )
| A、①② | B、②③ | C、①③ | D、①②③ |
考点:线性回归方程
专题:规律型,概率与统计
分析:可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.
解答:
解:①一般不能用残差图判断模型的拟合效果,故①不正确;
②相关指数R2可以刻画回归模型的拟合效果,R2越接近于1,说明模型的拟合效果越好,正确;
③可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故③正确
故选:B.
②相关指数R2可以刻画回归模型的拟合效果,R2越接近于1,说明模型的拟合效果越好,正确;
③可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故③正确
故选:B.
点评:本题主要考查线性相关指数的理解,解题的关键是理解对于拟合效果好坏的几个量的大小反映的拟合效果的好坏,比较基础.
练习册系列答案
相关题目
若一元二次不等式f(x)>0的解集为{x|-2<x<1},则f(2x)<0的解集为( )
| A、{x|x<-2或x>0} |
| B、{x|x<0或x>2} |
| C、{x|x>0} |
| D、{x|x<0} |
将51转化为二进制数得( )
| A、100111(2) |
| B、110011(2) |
| C、110110(2) |
| D、110101(2) |
若(
-x
)n展开式中含有x2项,则n的最小值是( )
| 1 |
| x |
| x |
| A、15 | B、8 | C、7 | D、3 |
某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因绿灯而通行的概率分别为
,
,
,则汽车在这三处因遇红灯而停车一次的概率为( )
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
i是虚数单位,复数
=( )
| i(2+i) |
| 1-2i |
| A、i | B、-i | C、1 | D、-1 |
已知函数f(x)是奇函数,且f(x+2)=-f(x),若f(x)在[-1,0]上是增函数,f(1),f(
),f(
)的大小关系是( )
| 3 |
| 2 |
| 13 |
| 3 |
A、f(1)<f(
| ||||
B、f(
| ||||
C、f(
| ||||
D、f(
|