题目内容

6.如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD,PD⊥底面ABCD,E,F分别为棱AB,PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDE⊥平面PEC.

分析 (1)取PD的中点G,连接AG,FG,则由中位线定理可知四边形AEFG是平行四边形,于是EF∥AG,从而得出EF∥平面PAD;
(2)由PD⊥平面ABCD得出PD⊥CE,由勾股定理的逆定理得出CE⊥DE,于是CE⊥平面PDE,故而平面PDE⊥平面PEC.

解答 证明:(1)取PD的中点G,连接AG,FG.
∵F,G分别是PC,PD的中点,
∴GF∥DC,GF=$\frac{1}{2}$DC,
又E是AB的中点,
∴AE∥DC,且AE=$\frac{1}{2}$DC,
∴GF∥AE,且GF=AE,
∴四边形AEFG是平行四边形,故EF∥AG.
又EF?平面PAD,AG?平面PAD,
∴EF∥平面PAD.
(2)∵PD⊥底面ABCD,EC?底面ABCD,
∴CE⊥PD.
∵四边形ABCD是矩形,AB=2AD,
∴DE=$\sqrt{2}$AD,CE=$\sqrt{2}$AD,CD=2AD,
∴DE2+CE2=CD2,即CE⊥DE,
又PD?平面PDE,DE?平面PDE,PD∩DE=D,
∴CE⊥平面PDE.
∵CE?平面PEC,
∴平面PDE⊥平面PEC.

点评 本题考查了线面平行,面面垂直的判定,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网