题目内容

四棱锥P-ABCD中,DC∥AB,AB=2DC=4
5
,AC=2AD=4,平面PAD⊥底面ABCD,M为棱PB上任一点.
(Ⅰ)证明:平面MAC⊥平面PAD;
(Ⅱ)若△PAD为等边三角形,平面MAC把四棱锥P-ABCD分成两个几何体,当着两个几何体的体积之比VM-ACD:VM-ABC=11:4时,求
PM
MB
的值.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(Ⅰ)由勾股定理可得AC⊥AD,进而由面面垂直的性质得到:AC⊥平面PAD,再由面面垂直的判定定理得到:平面MAC⊥平面PAD;
(Ⅱ)取AD的中点E,连接PE,BE,易证平面PBE⊥平面ABCD,过M作MN⊥BE于点N,则MN⊥平面ABCD,由VM-ACD:VM-ABC=11:4可得:VM-ABCD:VM-ABC=15:4,进而可得MN的长,最后由在△PAE中,
PM
MB
=
PE-MN
MN
得到答案.
解答: 证明:(Ⅰ)在△ACD中,由AC=2AD=4,2DC=4
5

可得:AC2+AD2=CD2
∴AC⊥AD,
∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,AC?底面ABCD,
∴AC⊥平面PAD,
又∵AC?平面MAC,
∴平面MAC⊥平面PAD;
解:(Ⅱ)取AD的中点E,连接PE,

则PE⊥AD,则PE⊥平面ABCD,且PE=
3

连接BE,则平面PBE⊥平面ABCD,
过M作MN⊥BE于点N,则MN⊥平面ABCD,
∴S△ACD=
1
2
×AC×AD=
1
2
×2×4=4,
S△ABC=
1
2
×AC×AB•sin∠BAC=
1
2
×4
5
×4×
2
2
5
=8,
故Vp-ABCD=
1
3
(S△ACD+S△ABC)PE=
1
3
×(4+8)×
3
=4
3

VM-ABC=
1
3
S△ABC•MN=
8
3
MN

由VM-ACD:VM-ABC=11:4得:VM-ABCD:VM-ABC=15:4,
即4
3
8
3
MN
=15:4,
解得:MN=
2
3
5

在△PAE中,
PM
MB
=
PE-MN
MN
=
3
2
点评:本题考查的知识点是平面与平面垂直的判定,棱锥的体积,熟练掌握空间线面关系的判定定理,性质定理及几何特征是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网