题目内容

20.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM,交y轴于点P,切圆于点M,若$2\overrightarrow{OM}=\overrightarrow{OF}+\overrightarrow{OP}$,则双曲线的离心率是$\sqrt{2}$.

分析 根据向量加法法则,得到OM是△POF中PF边上的中线.由PF与圆x2+y2=a2相切得到OM⊥PF,从而可得△POF是等腰直角三角形,∠MFO=45°.最后在Rt△OMF利用三角函数的定义算出$\frac{a}{c}$=$\frac{\sqrt{2}}{2}$,可得双曲线的离心率大小.

解答 解:∵$2\overrightarrow{OM}=\overrightarrow{OF}+\overrightarrow{OP}$,
∴△POF中,OM是PF边上的中线.
∵PF与圆x2+y2=a2相切,∴OM⊥PF,
由此可得△POF中,PO=FO,∠MFO=45°,
又∵Rt△OMF中,OM=a,OF=c,
∴sin∠MFO=$\frac{\sqrt{2}}{2}$,即$\frac{a}{c}$=$\frac{\sqrt{2}}{2}$.
因此,双曲线的离心率e=$\sqrt{2}$.
故答案为$\sqrt{2}$.

点评 本题在双曲线中给出向量关系式,在直线与圆相切的情况下求双曲线的离心率.着重考查了解直角三角形、向量的加法法则、直线与圆的位置关系和双曲线的简单性质等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网