题目内容

6.如图,一条巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)方向上,匀速向北航行20分钟到达B处,测得山顶P位于北偏东60°方向上,此时测得山顶P的仰角60°,若山高为$2\sqrt{3}$千米,
(1)船的航行速度是每小时多少千米?
(2)若该船继续航行10分钟到达D处,问此时山顶位于D处的南偏东什么方向?

分析 (1)解△BCP,利用BCP中,$tan∠PBC=\frac{PC}{BC}⇒BC=2$,在△ABC中,由正弦定理求得;
(2)利用正弦定理和余弦定理,分别解△BCD,求得∠CDB.

解答 解:(1)在△BCP中,$tan∠PBC=\frac{PC}{BC}⇒BC=2$
在△ABC中,由正弦定理得:$\frac{BC}{sin∠BAC}=\frac{AB}{sin∠BCA}⇒\frac{2}{{sin{{15}^0}}}=\frac{AB}{{sin{{45}^0}}}$,
所以$AB=2(\sqrt{3}+1)$,
船的航行速度是每小时$6(\sqrt{3}+1)$千米.
(2)在△BCD中,由余弦定理得:$CD=\sqrt{6}$,
在△BCD中,由正弦定理得:$\frac{CD}{sin∠DBC}=\frac{B}{sin∠CDB}⇒sin∠CDB=\frac{{\sqrt{2}}}{2}$,
所以,山顶位于D处南偏东1350

点评 本题考查了利用正弦定理和余弦定理解三角形,关键是将实际问题转化为解三角形的问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网