题目内容
(本题满分14分,第1小题满分6分,第2小题满分8分).
已知向量,且. 设.
(1)求的表达式,并求函数在上图像最低点的坐标.
(2)若对任意,恒成立,求实数的范围.
如图是底面积为,体积为的正三棱锥的主视图(等腰三角形)和左视图,此正三棱锥的
左视图的面积为( )
A. B.3 C. D.
已知为定义在R上的奇函数,当时,为二次函数,且满足,在上的两个零点为和.
(1)求函数在R上的解析式;
(2)作出的图象,并根据图象讨论关于的方程根的个数.
已知椭圆的上顶点为(0,2),且离心率为,
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:过圆上一点的切线方程为;
(Ⅲ)从椭圆C上一点P向圆上向引两条切线,切点为A,B,当直线AB分别与x轴、y轴交于M,N两点时,求的最小值.
若和都是定义在上的函数,则“与同是奇函数或同是偶函数”是“是偶函数”的( )
A、充分非必要条件. B、必要非充分条件.
C、充要条件. D、既非充分又非必要条件
(本小题满分12分)
已知,,直线.
(1)函数在处的切线与直线平行,求实数的值;
(2)若至少存在一个使成立,求实数的取值范围;
(3)设,当时的图象恒在直线的上方,求的最大值.
若的内角,满足,则当取最大值时,角大小为 .
实数,,,则实数的大小关系为 .
选修4-5 不等式证明选讲
已知函数,且满足的解集不是空集.
(1)求实数的取值范围;
(2)求的最小值.