题目内容

6.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=-x2+4x,
(1)求f(x)的解析式
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

分析 (1)先求f(0)=0,再设x<0,由奇函数的性质f(x)=-f(-x),利用x>0时的表达式求出x<0时函数的表达式.
(2)函数f(x)在区间[-1,a-2]上单调递增,可得-1<a-2≤2,即可求实数a的取值范围.

解答 解:(1)∵函数f(x)是定义在R上的奇函数,
∴f(0)=0,且f(-x)=-f(x),
∴f(x)=-f(-x),
设x<0,则-x>0,
∴f(-x)=-x2-4x,
∴f(x)=-f(-x)=-(-x2-4x)=x2+4x,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{-{x}^{2}+4x,x>0}\end{array}\right.$;
(2)∵函数f(x)在区间[-1,a-2]上单调递增,
∴-1<a-2≤2,
∴1<a≤4.

点评 本题主要考查奇函数的性质求解函数的解析式,关键是利用原点两侧的函数表达式之间的关系解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网