题目内容

15.已知函数$f(x)=\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x<0\\{log_a}x(a>0,a≠1),x>0\end{array}\right.$的图象上关于y轴对称的点至少有5对,则实数的取值范围是(  )
A..$(0,\frac{{\sqrt{5}}}{5})$B.$(\frac{{\sqrt{5}}}{5},1)$C.$(0,\frac{1}{3})$D.$(\frac{1}{3},1)$

分析 求出函数f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.

解答 解:若x>0,则-x<0,
∵x<0时,f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
则若f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称,
则f(-x)=-sin($\frac{π}{2}$x)-1=f(x),
即y=-sin($\frac{π}{2}$x)-1,x>0,
设g(x)=-sin($\frac{π}{2}$x)-1,x>0
作出函数g(x)的图象,
要使y=-sin($\frac{π}{2}$x)-1,x>0与f(x)=logax,x>0的图象至少有5个交点,
则0<a<1且满足f(9)<g(9),
即-2<loga9,
即loga9>logaa-2
则9<$\frac{1}{{a}^{2}}$,
解得0<a<$\frac{1}{3}$,
故选:C.

点评 本题主要考查分段函数的应用,作出函数关于y轴对称的图象,利用数形结合的思想是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网