题目内容
设f(x)=
|
|
求:g(
| 1 |
| 4 |
| 1 |
| 3 |
| 5 |
| 6 |
| 3 |
| 4 |
分析:先将x=
代入函数g(x)中求得g(
)的值,然后将x=
代入函数g(x)中求得g(
)的值,同理将x=
、
的值代入到函数f(x)中求得f(
)与f(
)的值,最后将求得的四个值代入到g(
)+f(
)+g(
)+f(
)可得答案.
| 1 |
| 4 |
| 1 |
| 4 |
| 5 |
| 6 |
| 5 |
| 6 |
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 5 |
| 6 |
| 3 |
| 4 |
解答:解:∵g(
)=cos
π=
,
g(
)=g(
-1)+1=g(-
)+1=cos(-
)+1=
+1
f(
)=f(
-1)+1=f(-
)+1=sin(-
π)+1=-
+1,
f(
)=f(
-1)+1=f(-
)+1=sin(-
)+1=-
+1
故:g(
)+f(
)+g(
)+f(
)=
+
+1-
+1-
+1=3
| 1 |
| 4 |
| 1 |
| 4 |
| ||
| 2 |
g(
| 5 |
| 6 |
| 5 |
| 6 |
| 1 |
| 6 |
| π |
| 6 |
| ||
| 2 |
f(
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| ||
| 2 |
f(
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
| π |
| 4 |
| ||
| 2 |
故:g(
| 1 |
| 4 |
| 1 |
| 3 |
| 5 |
| 6 |
| 3 |
| 4 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
点评:本题主要考查分段函数求值和三角函数的符号问题.考查基础知识的综合运用.
练习册系列答案
相关题目