题目内容
已知cos(α+
)=sin(α-
),则tanα=______.
| π |
| 3 |
| π |
| 3 |
∵cos(α+
)=sin(α-
),
∴cosαcos
-sinαsin
=sinαcos
-cosαsin
,即
cosα-
sinα=
sinα-
cosα,
化简得:(
+
)sinα=(
+
)cosα,即sinα=cosα
则tanα=1.
故答案为:1
| π |
| 3 |
| π |
| 3 |
∴cosαcos
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
化简得:(
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
则tanα=1.
故答案为:1
练习册系列答案
相关题目
已知cos(
-φ)=
,且|φ|<
,则tanφ等于( )
| 3π |
| 2 |
| ||
| 2 |
| π |
| 2 |
A、-
| ||||
B、
| ||||
C、
| ||||
D、-
|