题目内容
已知cos(α-
)=
,α为钝角,求cosα.
| π |
| 3 |
| 15 |
| 17 |
分析:依题意,可求得sin(α-
)=
,利用两角和的余弦cosα=cos[(α-
)+
]计算即可.
| π |
| 3 |
| 8 |
| 17 |
| π |
| 3 |
| π |
| 3 |
解答:解:∵α为钝角,
∴α-
∈(
,
),
又cos(α-
)=
,
∴sin(α-
)=
=
=
,
∴cosα=cos[(α-
)+
]
=cos(α-
)cos
-sin(α-
)sin
=
×
-
×
=
.
∴α-
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
又cos(α-
| π |
| 3 |
| 15 |
| 17 |
∴sin(α-
| π |
| 3 |
1-cos2(α-
|
1-(
|
| 8 |
| 17 |
∴cosα=cos[(α-
| π |
| 3 |
| π |
| 3 |
=cos(α-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| 15 |
| 17 |
| 1 |
| 2 |
| 8 |
| 17 |
| ||
| 2 |
=
15-8
| ||
| 34 |
点评:本题考查两角和的余弦,考查同角三角函数间的关系式,属于中档题.
练习册系列答案
相关题目
已知cos(
-φ)=
,且|φ|<
,则tanφ等于( )
| 3π |
| 2 |
| ||
| 2 |
| π |
| 2 |
A、-
| ||||
B、
| ||||
C、
| ||||
D、-
|