题目内容
已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( )
A.a2 014=-1,S2 014=2 B.a2 014=-3,S2 014=5
C.a2 014=-3,S2 014=2 D.a2 014=-1,S2 014=5
D
[解析] 由已知数列{an}满足an+1=an-an-1(n≥2),知an+2=an+1-an,an+2=-an-1(n≥2),an+3=-an,an+6=an,又a1=1,a2=3,a3=2,a4=-1,a5=-3,a6=-2,
所以当k∈N时,ak+1+ak+2+ak+3+ak+4+ak+5+ak+6=a1+a2+a3+a4+a5+a6=0,a2 014=a4=-1,S2 014=a1+a2+a3+a4=1+3+2+(-1)=5,故选D.
练习册系列答案
相关题目