题目内容
不等式x(9-x)>0的解集是( )
| A、{x|x>0或x<9} |
| B、{x|x<0或x>9} |
| C、{x|0<x<9} |
| D、{x|-9<x<0} |
考点:一元二次不等式的解法
专题:计算题,不等式的解法及应用
分析:先化为标准二次不等式,求出相应方程的两根,借助图象可得解集.
解答:
解:不等式x(9-x)>0可化为不等式x(x-9)<0,
由于方程x(x-9)=0的两个根是0,9.
∴它的解集是{x|0<x<9}.
故选:C.
由于方程x(x-9)=0的两个根是0,9.
∴它的解集是{x|0<x<9}.
故选:C.
点评:考查一元二次不等式,本题为解简单的不等式,较容易.
练习册系列答案
相关题目
双曲线的
-
=1(a>0)的一条渐近线方程是y=
x,则a=( )
| x2 |
| a2 |
| y2 |
| 4 |
| 2 |
| 3 |
A、
| ||
| B、3 | ||
| C、6 | ||
| D、9 |
已知函数f(x)=x3+ax+1是R上的单调递增函数,则a的取值范围是( )
| A、a≥0 | B、a≥-1 |
| C、a<0 | D、a<-1 |
己知双曲线
-
=1(a>0,b>0)离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则
的值为( )
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| a |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知双曲线
-x2=1与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为( )
| y2 |
| 3 |
A、2
| ||
B、4
| ||
C、3
| ||
D、4
|
2sin
cos
的值是( )
| π |
| 12 |
| π |
| 12 |
A、
| ||
B、
| ||
C、
| ||
| D、1 |
若抛物线C1:y2=4x的焦点F恰好是双曲线C2:
-
=1(a>0,b>0)的右焦点,且C1与C2交点的连线过点F,则双曲线C2的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||||
B、2
| ||||||
C、3+2
| ||||||
D、
|