题目内容

如图,在平行六面体ABCD-A1B1C1D1中,∠C1CB=∠C1CD=∠BCD=θ(θ是锐角),底面ABCD是菱形,设
CD
=a,
CB
=b,
CC1
=c.
(Ⅰ)试用基底{a,b,c}表示向量
CA1
BD
C1D
,并证明CA1⊥BD;
(Ⅱ)若CA1⊥平面C1BD,求证:CC1=CD.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(Ⅰ)根据向量的三角形法则把要表示的向量写成以几何体的棱为基底的向量的加法的形式,从向量的起点出发,沿着棱到终点.根据垂直的条件,其数量积等于0,即可证明
(Ⅱ)根据向量垂直,其数量积等于0,再根据数量积的公式,即可证明CC1=CD.
解答: 解:(I)
CA1
=a+b+c
BD
=a-b
C1D
=a-c

依题意,|a|=|b|,
于是
CA1
BD
=(a+b+c)•(a-b)=a2-b2+a•c-b•c
=|a||c|cosθ-|b||c|cosθ=0,
∴CA1⊥BD;
(II)∵CA1⊥平面C1BD,
∴CA1⊥BD,
C1A
C1D
=0

C1A
C1D
=a2-c2+a•b-c•b=|a|2-|c|2+|a||b|cosθ-|c||b|cosθ
=(|a|-|c|)(|a|+|c|+|b|cosθ),
∵|a|+|c|+|b|cosθ>0,
∴|a|=|c|,
即CC1=CD.
点评:本题考查向量的基底表示和向量垂直的判定和性质,关键把向量表示成模长和夹角的向量的形式的运算,属于基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网