ÌâÄ¿ÄÚÈÝ
20£®Ä³É̳ǾÙÐÐÓн±´ÙÏú»î¶¯£¬¹Ë¿Í¹ºÂòÒ»¶¨½ð¶îµÄÉÌÆ·ºó¼´¿É³é½±£¬³é½±¹æÔòÈçÏ£º1£®³é½±·½°¸ÓÐÒÔÏÂÁ½ÖÖ£¬·½°¸a£º´Ó×°ÓÐ2¸öºìÇò¡¢3¸ö°×Çò£¨½öÑÕÉ«²»Í¬£©µÄ¼×´üÖÐËæ»úÃþ³ö2¸öÇò£¬Èô¶¼ÊǺìÇò£¬Ôò»ñµÃ½±½ð30Ôª£»·ñÔò£¬Ã»Óн±½ð£¬¶Ò½±ºó½«Ãþ³öµÄÇò·Å»Ø¼×´üÖУ¬·½°¸b£º´Ó×°ÓÐ3¸öºìÇò¡¢2¸ö°×Çò£¨½öÑÕÉ«Ïàͬ£©µÄÒÒ´üÖÐËæ»úÃþ³ö2¸öÇò£¬Èô¶¼ÊǺìÇò£¬Ôò»ñµÃ½±½ð15Ôª£»·ñÔò£¬Ã»Óн±½ð£¬¶Ò½±ºó½«Ãþ³öµÄÇò·Å»ØÒÒ´üÖУ®
2£®³é½±Ìõ¼þÊÇ£¬¹Ë¿Í¹ºÂòÉÌÆ·µÄ½ð¶îÂò100Ôª£¬¿É¸ù¾Ý·½°¸a³é½±Ò»´Î£ºÂú150Ôª£¬¿É¸ù¾Ý·½°¸b³é½±Ò»´Î£¨ÀýÈçij¹Ë¿Í¹ºÂòÉÌÆ·µÄ½ð¶îΪ260Ôª£¬Ôò¸Ã¹Ë¿Í¿ÉÒÔ¸ù¾Ý·½°¸a³é½±Á½´Î»ò·½°¸b³é½±Ò»´Î»ò·½°¸a¡¢b¸÷³é½±Ò»´Î£©£®ÒÑÖª¹Ë¿ÍAÔÚ¸ÃÉ̳¡¹ºÂòÉÌÆ·µÄ½ð¶îΪ350Ôª£®
£¨1£©Èô¹Ë¿ÍAֻѡÔñ·½°¸a½øÐг齱£¬ÇóÆäËù»ñ½±½ðµÄÆÚÍûÖµ£»
£¨2£©ÒªÊ¹Ëù»ñ½±½ðµÄÆÚÍûÖµ×î´ó£¬¹Ë¿ÍAÓ¦ÈçºÎ³é½±£®
·ÖÎö £¨1£©¹Ë¿ÍAֻѡÔñ·½°¸a½øÐг齱£¬ÔòÆä³é½±·½Ê½Îª°´·½°¸a³é½±Èý´Î£¬Âú×ã¶þÏî·Ö²¼B£¨3£¬$\frac{1}{10}$£©£¬ÓÉ´ËÄÜÇó³ö¹Ë¿ÍAֻѡÔñ·½°¸a½øÐг齱£¬ÆäËù»ñ½±½ðµÄÆÚÍûÖµ£®
£¨2£©°´·½°¸bÒ»´Î³éÖеĸÅÂÊP£¨B£©=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$£¬¼ÙÉè¢Ù£¬¹Ë¿ÍA°´·½°¸a³é½±Á½´Î£¬°´·½°¸b³é½±Ò»´Î£¬´Ëʱ·½°¸aµÄ³é·¨Âú×ã¶þÏî·Ö²¼B1¡«£¨2£¬$\frac{1}{10}$£©£¬·½°¸bµÄ³é·¨Âú×ã¶þÏî·Ö²¼B2¡«£¨1£¬$\frac{3}{10}$£©£¬ÉèËùµÃ½±½ðΪw2£¬Çó³ö${E}_{{w}_{2}}$£»¼ÙÉè¢Ú£¬¹Ë¿ÍA°´·½°¸b³é½±Á½´Î£¬´ËʱÂú×ã¶þÏî·Ö²¼B¡«£¨2£¬$\frac{3}{10}$£©£¬ÉèËùµÃ½±½ðΪw3£¬Çó³ö${E}_{{w}_{3}}$£®ÓÉ´ËÄÜÇó³öҪʹËù»ñ½±½ðµÄÆÚÍûÖµ×î´ó£¬¹Ë¿ÍAÓ¦°´·½°¸a³é½±Á½´Î£¬°´·½°¸b³é½±Ò»´Î£®
½â´ð ½â£º£¨1£©¹Ë¿ÍAֻѡÔñ·½°¸a½øÐг齱£¬ÔòÆä³é½±·½Ê½Îª°´·½°¸a³é½±Èý´Î£¬
°´·½°¸aÒ»´Î³éÖеĸÅÂÊP£¨A£©=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$£¬
´ËʱÂú×ã¶þÏî·Ö²¼B£¨3£¬$\frac{1}{10}$£©£¬
ÉèËùµÃ½±½ðΪw1£¬Ôò${E}_{{w}_{1}}$=$3¡Á\frac{1}{10}¡Á30=9$£¬
¡à¹Ë¿ÍAֻѡÔñ·½°¸a½øÐг齱£¬ÆäËù»ñ½±½ðµÄÆÚÍûֵΪ9Ôª£®
£¨2£©°´·½°¸bÒ»´Î³éÖеĸÅÂÊP£¨B£©=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$£¬
¼ÙÉè¢Ù£¬¹Ë¿ÍA°´·½°¸a³é½±Á½´Î£¬°´·½°¸b³é½±Ò»´Î£¬
´Ëʱ·½°¸aµÄ³é·¨Âú×ã¶þÏî·Ö²¼B1¡«£¨2£¬$\frac{1}{10}$£©£¬
·½°¸bµÄ³é·¨Âú×ã¶þÏî·Ö²¼B2¡«£¨1£¬$\frac{3}{10}$£©£¬
ÉèËùµÃ½±½ðΪw2£¬Ôò${E}_{{w}_{2}}$=$2¡Á\frac{1}{10}¡Á30+1¡Á\frac{3}{10}¡Á15$=10.5£¬
¼ÙÉè¢Ú£¬¹Ë¿ÍA°´·½°¸b³é½±Á½´Î£¬´ËʱÂú×ã¶þÏî·Ö²¼B¡«£¨2£¬$\frac{3}{10}$£©£¬
ÉèËùµÃ½±½ðΪw3£¬¡à${E}_{{w}_{3}}$=2¡Á$\frac{3}{10}¡Á15$=9£®
¡ß${E}_{{w}_{1}}={E}_{{w}_{3}}£¼{E}_{{w}_{2}}$£¬
¡àҪʹËù»ñ½±½ðµÄÆÚÍûÖµ×î´ó£¬¹Ë¿ÍAÓ¦°´·½°¸a³é½±Á½´Î£¬°´·½°¸b³é½±Ò»´Î£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨼°Ó¦Ó㬿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮
| A£® | {x|-1£¼x£¼2} | B£® | {x|2£¼x£¼3} | C£® | {x|x£¼3} | D£® | {x|-1£¼x¡Ü2} |
| A£® | k=¡À2 | B£® | k=$\frac{8}{{e}^{2}}$ | C£® | k=2 | D£® | k=$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$ |
| A£® | $1\frac{61}{66}$Éý | B£® | 2Éý | C£® | $2\frac{3}{22}$Éý | D£® | 3Éý |
ÆäÖÐÒ»¸öÊý×Ö±»ÎÛËð£®
£¨1£©Çó¶«²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý³¬¹ýÎ÷²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊýµÄ¸ÅÂÊ£®
£¨2£©Ëæ×ŽÚÄ¿µÄ²¥³ö£¬¼«´ó¼¤·¢Á˹ÛÖÚ¶Ô³ÉÓï֪ʶµÄѧϰ»ýÀÛµÄÈÈÇ飬´ÓÖлñÒæ·Ëdz£®ÏÖ´Ó¹Û¿´¸Ã½ÚÄ¿µÄ¹ÛÖÚÖÐËæ»úͳ¼ÆÁË4λ¹ÛÖÚµÄÖܾùѧϰ³ÉÓï֪ʶµÄʱ¼äy£¨µ¥Î»£ºÐ¡Ê±£©ÓëÄêÁäx£¨µ¥Î»£ºË꣩£¬²¢ÖÆ×÷Á˶ÔÕÕ±í£¨Èç±íËùʾ£©
| ÄêÁäx£¨Ë꣩ | 20 | 30 | 40 | 50 |
| Öܾùѧϰ³ÉÓï֪ʶʱ¼äy£¨Ð¡Ê±£© | 2.5 | 3 | 4 | 4.5 |
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$x£®