题目内容
1.当行驶的6辆军车行驶至A处时,接上级紧急通知,这6辆军车需立即沿B、C两路分开纵队行驶,要求B、C每路至少2辆但不多于4辆.则这6辆军车不同的分开行驶方案总数是( )| A. | 50 | B. | 1440 | C. | 720 | D. | 2160 |
分析 确定B、C两路军车的量数类型,然后求解这6辆军车不同的分开行驶方案总数.
解答 解:由题意可知B、C两路军车的量数类型有2、4;3、3;4、2;三种类型.由于军车互不相同,排列是有顺序的,2、4;4、2;类型的结果都是:A62A44.3、3类型的结果为:A63A33.
则这6辆军车不同的分开行驶方案总数是:2A62A44+A63A33=2160.
故选:D.
点评 本题考查排列组合的实际应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目
1.已知△ABC是等边三角形,点D满足$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$=2$\overrightarrow{AD}$,且|$\overrightarrow{CD}$|=$\sqrt{3}$,那么$\overrightarrow{DA}$•$\overrightarrow{DC}$=( )
| A. | -$\frac{3}{7}$ | B. | $\frac{3}{7}$ | C. | -$\frac{4}{7}$ | D. | $\frac{4}{7}$ |
9.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-2),x>1}\end{array}\right.$,若方程f(x)-mx-1=0恰有两个不同实根,则正实数m的取值范围为( )
| A. | ($\frac{e-1}{2}$,1)∪(1,e-1) | B. | ($\frac{e-1}{2}$,1)∪(1,e-1] | C. | ($\frac{e-1}{3}$,1)∪(1,e-1) | D. | ($\frac{e-1}{3}$,1)∪(1,e-1] |
16.已知a,b∈R,且a-1+(b+2)i=0.i为虚数单位,则复数(a+bi)2在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
13.设$\overrightarrow{a}$,$\overrightarrow{b}$不共线的两个向量,若命题p:$\overrightarrow{a}•\overrightarrow{b}$>0,命题q:$\overrightarrow{a},\overrightarrow{b}$夹角是锐角,则命题p是命题q成立的 ( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
11.复数$\frac{1}{1+i}$的虚部是( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}i$ | D. | $-\frac{1}{2}i$ |