题目内容

2.已知函数$f(x)=x({\frac{2}{{{2^x}-1}}+k})$为偶函数.
(1)求k的值;
(2)若$g(x)=\frac{f(x)}{x}$,当x∈(0,1]时,求g(x)的值域.

分析 (1)利用偶函数的定义,建立方程,即可求k的值;
(2)确定$g(x)=\frac{f(x)}{x}$的解析式,即可求出当x∈(0,1]时,g(x)的值域.

解答 解:(1)因为$f(x)=x({\frac{2}{{{2^x}-1}}+k})$为偶函数,
所以$\frac{2}{{{2^x}-1}}+k=-({\frac{2}{{{2^{-x}}-1}}+k})$恒成立,解得k=1.
(2)$g(x)=\frac{2}{{{2^x}-1}}+1,x∈({0,1}]⇒{2^x}∈({1,2}]⇒{2^x}-1∈({0,1}]$
所以$\frac{2}{{{2^x}-1}}+1∈[{3+∞})$.

点评 本题考查合适的奇偶性,考查函数的值域,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网