题目内容

17.设函数$f(x)=\left\{{\begin{array}{l}{({k-1}){x^2}-3({k-1})x+\frac{13k-9}{4},x≥2}\\{{{({\frac{1}{2}})}^x}-1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x<2}\end{array}}\right.$,若f(n+1)<f(n)对于一切n∈N+恒成立,则实数k的取值范围为(  )
A.$k<-\frac{1}{5}$B.$\frac{2}{5}≤k<1$C.$k≤-\frac{2}{5}$D.k<1

分析 由f(n+1)<f(n)对于一切n∈N+恒成立,可得{f(n)}在n∈N+为递减数列,分别讨论各段的情况,即有k<1且f(2)<f(1),解不等式即可得到所求范围.

解答 解:f(n+1)<f(n)对于一切n∈N+恒成立,
可得{f(n)}在n∈N+为递减数列,
当x≥2时,对称轴为x=$\frac{3}{2}$<2,
即有k-1<0,即k<1①,
又x<2时,由指数函数的单调性,可得为减函数,
由单调性的定义可得f(2)<f(1),
即为4(k-1)-6(k-1)+$\frac{13k-9}{4}$<$\frac{1}{2}$-1,
解得k<-$\frac{1}{5}$,②
由①②可得k<-$\frac{1}{5}$,
故选:A.

点评 本题分段函数的运用:求参数范围,考查函数的单调性的运用,注意函数和数列的区别,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网