题目内容

15.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4
(1)求证:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

分析 (1)依题意可知,AA1⊥平面ABC,∠BAC=90°,建立空间直角坐标系A-xyz,利用向量法能证明B1O⊥平面AEO.
(2)求出平面AEO的法向量和平面B1AE的法向量,利用向量法能求出二面角B1-AE-F的余弦值.

解答 证明:(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,
如图建立空间直角坐标系A-xyz,因为AB=AC=AA1=4,
则A(0,0,0),B(4,0,0),E(0,4,2),B1(4,0,4),C(0,4,0),O(2,2,0),(2分)
$\overrightarrow{{B}_{1}O}$=(-2,2,-4),$\overrightarrow{EO}$=(2,-2,-2),$\overrightarrow{AO}$=(2,2,0),(3分)
$\overrightarrow{{B}_{1}O}$•$\overrightarrow{EO}$=(-2)×2+2×(-2)+(-4)×(-2)=0,
∴$\overrightarrow{{B}_{1}O}$⊥$\overrightarrow{EO}$,∴B1O⊥EO,
$\overrightarrow{{B}_{1}O}•\overrightarrow{AO}$=(-2)×2+2×2+(-4)×0=0,∴$\overrightarrow{{B}_{1}O}$⊥$\overrightarrow{AO}$,∴B1O⊥AO,(5分)
∵AO∩EO=O,AO,EO?平面AEO,
∴B1O⊥平面AEO.(6分)
(2)由(1)知,平面AEO的法向量为$\overrightarrow{{B}_{1}O}$=(-2,2,-4),(7分)
设平面 B1AE的法向量为$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{AE}=(0,4,2),\overrightarrow{{B}_{1}A}=(-4,0,-4=0$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=2y+z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}A}=x+z=0}\end{array}\right.$,令x=2,则$\overrightarrow{n}$=(2,2,-2),(10分)
∴cos<$\overrightarrow{n},\overrightarrow{{B}_{1}O}$>=$\frac{\overrightarrow{n}•\overrightarrow{{B}_{1}O}}{|\overrightarrow{n}|•|\overrightarrow{{B}_{1}O}|}$=$\frac{6}{\sqrt{9}×\sqrt{24}}$=$\frac{\sqrt{6}}{6}$,
∴二面角B1-AE-F的余弦值为$\frac{\sqrt{6}}{6}$.(12分)

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网