题目内容
8.二项式(2x2-$\frac{1}{{x}^{3}}$)5的展开式中第四项的系数为( )| A. | -40 | B. | 10 | C. | 40 | D. | -20 |
分析 根据二项展开式的通项公式可得第四项的系数.
解答 解:二项式(2x2-$\frac{1}{{x}^{3}}$)5展开式中第四项系数为C53•(-1)3•22=-40,
故选A.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题
练习册系列答案
相关题目
19.“a=2”是“ax+y-2=0与直线2x+(a-1)y+4=0平行”的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
16.已知命题p:?x∈R,log2(x2+4)≥2,命题q:y=x${\;}^{\frac{1}{2}}$是定义域上的减函数,则下列命题中为真命题的是( )
| A. | p∨(¬q) | B. | p∧q | C. | (¬p)∨q | D. | (¬p)∧(¬q) |
20.已知i为虚数单位,复数z满足z(1-i)=1+i,则z的共轭复数是( )
| A. | 1 | B. | -1 | C. | i | D. | -i |
17.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
你认为婴儿的性别与出生时间有关系的把握为( )
参考公式及数据:$\begin{array}{l}{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}\end{array}$
| 晚上 | 白天 | 合计 | |
| 男婴 | 24 | 31 | 55 |
| 女婴 | 8 | 26 | 34 |
| 合计 | 32 | 57 | 89 |
参考公式及数据:$\begin{array}{l}{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}\end{array}$
| P(k2≥k) | 0.25 | 0.15 | 0.1 0 | 0.05 | 0.025 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
| A. | 80% | B. | 90% | C. | 95% | D. | 99% |