题目内容

在△ABC中,a=1,b=2,cosC=
1
4
,则c=
 
;sinA=
 
考点:余弦定理
专题:解三角形
分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.
解答: 解:∵在△ABC中,a=1,b=2,cosC=
1
4

∴由余弦定理得:c2=a2+b2-2abcosC=1+4-1=4,即c=2;
∵cosC=
1
4
,C为三角形内角,
∴sinC=
1-cos2C
=
15
4

∴由正弦定理
c
sinC
=
a
sinA
得:sinA=
asinC
c
=
15
4
2
=
15
8

故答案为:2;
15
8
点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网