题目内容
设定点M1(0, -3), M2(0, 3),动点P满足条件|PM1|+|PM2|=a+(其中a是正常
数),则点P的轨迹是
A.椭圆 B.线段 C.椭圆或线段 D.不存在
C
如图,在四棱柱中,已知平面,
且.
(1)求证:;
(2)在棱BC上取一点E,使得∥平面,求的值.
某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.
如图,正方体ABCD—A1B1C1D1,则下列四个命题:
①P在直线BC1上运动时,三棱锥A—D1PC的体积不变;
②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;
③P在直线BC1上运动时,二面角P—AD1—的大小不变;
④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线D1A1。
其中真命题的编号是 。
数学考试中,甲、乙两校的成绩平均分相同,但甲校的成绩比乙校整齐,若甲、乙两校的成绩方差分别为和,则
A.> B.< C.= D.S1>S2
某学校共有师生2400人,现用分层抽样方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 。
已知函数y=x-1,令x=―4, ―3, ―2, -1, 0, 1, 2, 3, 4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1, y1), P2(x2, y2),
(1)求P1, P2两点在双曲线xy=6上的概率;
(2)求P1, P2两点不在同一双曲线xy=k(k≠0)上的概率。
已知cos(α-)+sinα=,则sin(α+π)= 。
函数f(x)=2+logax(a>0, a≠1)的图像恒过定点A,若点A在直线mx+ny-3=0上,其中mn>0,则的最小值为 。