题目内容

3.已知双曲线的两焦点为F1,F2,焦距为2$\sqrt{5}$,点P在双曲线上,且满足∠F1PF2=90°,又|PF1|-|PF2|=4,则△F1PF2的面积为1.

分析 设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x-y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2-(x-y)2求得xy,进而可求得△F1PF2的面积.

解答 解:设|PF1|=x,|PF2|=y,(x>y)
根据题意可知x-y=4,
∵∠F1PF2=90°,
∴x2+y2=20
∴2xy=x2+y2-(x-y)2=4
∴xy=2
∴△F1PF2的面积为$\frac{1}{2}$xy=1
故答案为:1.

点评 本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网