题目内容

14.在等腰三角形中,已知顶角θ的正弦值为$\frac{3}{5}$,试求该三角形底角的正弦、余弦和正切值.

分析 设出底角为α,根据三角形的内角和定理表示出底角,由题意得到sinα的值,由α为三角形的内角,利用同角三角函数间的基本关系求出cosα的值,进一步求得三角形底角的正弦、余弦和正切值.

解答 解:设等腰三角形的底角为α,则2α+θ=π,
∴$α=\frac{π-θ}{2}=\frac{π}{2}-\frac{θ}{2}$,
又sin$θ=\frac{3}{5}$,
∴cosθ=$±\frac{4}{5}$,
当cos$θ=\frac{4}{5}$时,sinα=sin($\frac{π}{2}-\frac{θ}{2}$)=cos$\frac{θ}{2}$=$\sqrt{\frac{1+cosθ}{2}}=\sqrt{\frac{1+\frac{4}{5}}{2}}=\frac{3\sqrt{10}}{10}$,
cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{3\sqrt{10}}{10})^{2}}=\frac{\sqrt{10}}{10}$,tanα=$\frac{sinα}{cosα}=3$;
当cosθ=$-\frac{4}{5}$时,sinα=sin($\frac{π}{2}-\frac{θ}{2}$)=cos$\frac{θ}{2}$=$\sqrt{\frac{1+cosθ}{2}}$=$\sqrt{\frac{1-\frac{4}{5}}{2}}=\frac{\sqrt{10}}{10}$,
cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{\sqrt{10}}{10})^{2}}=\frac{3\sqrt{10}}{10}$,tanα=$\frac{sinα}{cosα}=\frac{1}{3}$.

点评 本题考查了同角三角函数间的基本关系,等腰三角形的性质,以及二倍角的余弦函数公式,熟练掌握基本关系是解本题的关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网