题目内容

16.在数列{an}中,a1=$\frac{1}{3}$,$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,n∈N+,且bn=$\frac{1}{3+{a}_{n}}$,记Pn=b1•b2•b3…bn,Sn=b1+b2+b3+…+bn,则3n+1Pn+Sn=3.

分析 由已知数列递推式可得${b}_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-{b}_{n}$,然后求出Pn与Sn,代入3n+1Pn+Sn得答案.

解答 解:∵$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,bn=$\frac{1}{3+{a}_{n}}$,
∴${b}_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-{b}_{n}$,
∴Pn=b1•b2•b3…bn =$\frac{{a}_{1}}{3{a}_{2}}•\frac{{a}_{2}}{3{a}_{3}}…\frac{{a}_{n}}{3{a}_{n+1}}=\frac{1}{{3}^{n+1}•{a}_{n+1}}$,
Sn=b1+b2+b3+…+bn=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}=3-$$\frac{1}{{a}_{n+1}}$,
则3n+1Pn+Sn=$\frac{1}{{a}_{n+1}}+3-\frac{1}{{a}_{n+1}}=3$.
故答案为:3.

点评 本题考查数列求和,考查学生的逻辑思维能力和运算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网