ÌâÄ¿ÄÚÈÝ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=3cos¦Á\\ y=\sqrt{3}sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{3}£©=\sqrt{3}$£®
£¨¢ñ£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèµãPΪÇúÏßCÉÏÈÎÒâÒ»µã£¬ÇóµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ¼«×ø±ê·½³Ìת»¯Îª$¦Ñ£¨\frac{1}{2}cos¦È-\frac{{\sqrt{3}}}{2}sin¦È£©=\sqrt{3}$£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦Á£¬ÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£®
£¨¢ò£©Éèµã$P£¨3cos¦Á£¬\sqrt{3}sin¦Á£©$ΪÇúÏßCÉÏÈÎÒâÒ»µã£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°Èý½Çº¯ÊýÐÔÖÊÄÜÇó³öµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÒòΪֱÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨¦È+\frac{¦Ð}{3}£©=\sqrt{3}$£¬
¼´$¦Ñ£¨\frac{1}{2}cos¦È-\frac{{\sqrt{3}}}{2}sin¦È£©=\sqrt{3}$£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-2\sqrt{3}=0$£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=3cos¦Á\\ y=\sqrt{3}sin¦Á\end{array}\right.$£¨¦ÁÊDzÎÊý£©£¬
ÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÏûÈ¥¦Á£¬
¿ÉµÃÇúÏßCµÄÆÕͨ·½³ÌΪ$\frac{x^2}{9}+\frac{y^2}{3}=1$£®
£¨¢ò£©Éèµã$P£¨3cos¦Á£¬\sqrt{3}sin¦Á£©$ΪÇúÏßCÉÏÈÎÒâÒ»µã£¬
ÔòµãPµ½Ö±ÏßlµÄ¾àÀë$d=\frac{{|3cos¦Á-3sin¦Á-2\sqrt{3}|}}{2}=\frac{{|3\sqrt{2}cos£¨¦Á+\frac{¦Ð}{4}£©-2\sqrt{3}|}}{2}$£¬
¹Êµ±$cos£¨¦Á+\frac{¦Ð}{4}£©=-1$ʱ£¬dÈ¡×î´óֵΪ$\frac{{3\sqrt{2}+2\sqrt{3}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éµãµ½Ö±ÏߵľàÀëµÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø