题目内容

3.已知实数a、b满足0<a<1,0<b<1,求证:$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$≥2$\sqrt{2}$.

分析 建立坐标系,正方形的边长为1,则O(0,0),A(1,0),B(1,1),C(0,1),正方形内取点D(a,b),a、b满足0<a<1,0<b<1,$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$表示OD+AD+CD+BD,利用OD+BD≥OB,AD+CD≥AC,即可证明结论.

解答 证明:建立如图所示的坐标系,正方形的边长为1,则O(0,0),A(1,0),B(1,1),C(0,1),正方形内取点D(a,b),a、b满足0<a<1,0<b<1,
$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$表示OD+AD+CD+BD,利用OD+BD≥OB,AD+CD≥AC,
可得OD+AD+CD+BD≥OB+AC=2$\sqrt{2}$,
∴$\sqrt{{a}^{2}+{b}^{2}}$+$\sqrt{(a-1)^{2}+{b}^{2}}$+$\sqrt{{a}^{2}+(b-1)^{2}}$+$\sqrt{(a-1)^{2}+(b-1)^{2}}$≥2$\sqrt{2}$.

点评 本题考查不等式的证明,考查构造法的运用,正确利用几何意义是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网