题目内容
2.在直角坐标系xoy中,曲线C1上的点均在圆C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值,则曲线C1的方程为y2=20x.分析 由题设知,曲线C1上任意一点M到圆心C2(5,0)的距离等于它到直线x=-5的距离,根据抛物线的定义,可得求曲线C1的方程.
解答 解:由题设知,曲线C1上任意一点M到圆心C2(5,0)的距离等于它到直线x=-5的距离,
因此,曲线C1是以(5,0)为焦点,直线x=-5为准线的抛物线,
故其方程为y2=20x.
故答案为y2=20x.
点评 本题考查抛物线的定义,考查学生分析解决问题的能力,正确转化是关键.
练习册系列答案
相关题目
10.已知点O为△ABC所在平面内一点,${\overrightarrow{OA}^2}={\overrightarrow{OB}^2}={\overrightarrow{OC}^2}$,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且$|{\overrightarrow{AC}}|=|{\overrightarrow{AO}}|$,则$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
17.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其图象与直线y=2最近的两个相邻交点间的距离为$\frac{π}{3}$,若f(x)>1对$?x∈({-\frac{π}{8},\frac{π}{3}})$恒成立,则φ的取值范围是( )
| A. | $[{\frac{π}{4},\frac{π}{3}}]$ | B. | $[{-\frac{π}{6},\frac{π}{4}}]$ | C. | $[{\frac{π}{6},\frac{π}{4}}]$ | D. | $({\frac{π}{6},\frac{π}{2}}]$ |
7.
如图,点P、Q分别是正方体ABCD-A1B1C1D1的面对角线AD1、BD的中点,则异面直线PQ和BC1所成的角为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
14.过点M(1,1)的直线与双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$交于A,B两点,且点M平分AB,则直线AB的方程为( )
| A. | 4x+3y-7=0 | B. | 3x+4y+1=0 | C. | 3x-4y-7=0 | D. | 4y-3x-1=0 |