ÌâÄ¿ÄÚÈÝ
É趨ÒåÔÚÇø¼ä[x1£¬ x2]Éϵĺ¯Êýy
=f(x)µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OÎª×ø±êԵ㣬ÉèÏòÁ¿
=
£¬![]()
£¬
=(x£¬y)£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+(1£¦Ë) x2ʱ£¬¼ÇÏòÁ¿
=¦Ë
+(1£¦Ë)
£®¶¨Òå¡°º¯Êýy=f(x)ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸¡°
kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®
£¨1£©É躯Êý f(x)=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄȡֵ·¶Î§£»
£¨2£©ÇóÖ¤£ºº¯Êý
ÔÚÇø¼ä
ÉÏ¿ÉÔÚ±ê×¼k=
ÏÂÏßÐÔ½üËÆ£®£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln(e£1)=
0.541£©
¡¾½â¡¿£¨1£©ÓÉ
=¦Ë
+(1£¦Ë)
µÃµ½
=¦Ë
£¬ËùÒÔB£¬N£¬AÈýµã¹²Ïߣ¬ ÓÖÓÉx=¦Ë x1+(1£¦Ë) x2ÓëÏòÁ¿
=¦Ë
+(1£¦Ë)
£¬µÃNÓëMµÄºá×ø±êÏàͬ£®¶ÔÓÚ [0£¬1]Éϵĺ¯Êýy=x2£¬A(0£¬0)£¬B(1£¬1)£¬
ÔòÓÐ
£¬¹Ê
£»ËùÒÔkµÄȡֵ·¶Î§ÊÇ
£®
£¨2£©¶ÔÓÚ
Éϵĺ¯Êý
£¬
A(
)£¬B(
)£¬ ÔòÖ±ÏßABµÄ·½³Ì
£¬ Áî
£¬ÆäÖÐ
£¬ÓÚÊÇ
£¬ ÁбíÈçÏ£º
| x | em | (em£¬em+1£em) | em+1£em | (em+1£em£¬em+1) | em+1 |
|
| + | 0 | £ | ||
|
| 0 | Ôö |
| ¼õ | 0[ |
Èô
Ϊ¼¯ºÏ
ÇÒ
µÄ×Ó¼¯£¬ÇÒÂú×ãÁ½¸öÌõ¼þ£º
¢Ù
£»¢Ú¶ÔÈÎÒâµÄ
£¬ÖÁÉÙ´æÔÚÒ»¸ö
£¬Ê¹
»ò
.
|
|
| ¡ |
|
|
|
| ¡ |
|
| ¡ | ¡ | ¡ | ¡ |
|
|
| ¡ |
|
Ôò³Æ¼¯ºÏ×é
¾ßÓÐÐÔÖÊ
.Èçͼ£¬×÷
ÐÐ
ÁÐÊý±í£¬¶¨ÒåÊý±íÖеĵÚ
ÐеÚ
ÁеÄÊýΪ
.
£¨¢ñ£©µ±
ʱ£¬ÅжÏÏÂÁÐÁ½¸ö¼¯ºÏ×éÊÇ·ñ¾ßÓÐÐÔÖÊ
£¬Èç¹ûÊÇÇ뻳öËù¶ÔÓ¦µÄ±í¸ñ£¬Èç¹û²»ÊÇÇë˵Ã÷ÀíÓÉ£»
¼¯ºÏ×é1£º
£»¼¯ºÏ×é2£º
.
£¨¢ò£©µ±
ʱ£¬Èô¼¯ºÏ×é
¾ßÓÐÐÔÖÊ
£¬ÇëÏÈ»³öËù¶ÔÓ¦µÄ
ÐÐ3ÁеÄÒ»¸öÊý±í£¬ÔÙÒÀ´Ë±í¸ñ·Ö±ðд³ö¼¯ºÏ
£»£¨¢ó£©µ±
ʱ£¬¼¯ºÏ×é
ÊǾßÓÐÐÔÖÊ
ÇÒËùº¬¼¯ºÏ¸öÊý×îСµÄ¼¯ºÏ×飬Çó
µÄÖµ¼°
µÄ×îСֵ.£¨ÆäÖÐ
±íʾ¼¯ºÏ
Ëùº¬ÔªËصĸöÊý£©