题目内容
19.利用数学归纳法证明:$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$.分析 用数学归纳法证明:(1)当n=1时,去证明等式成立;(2)假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.
解答 解:(1)当n=1时,左边=1-$\frac{1}{2}$=$\frac{1}{2}$,右边=$\frac{1}{2}$,命题成立.
(2)假设当n=k时命题成立,即1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k}$=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$,
那么当n=k+1时,
左边=1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$=$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
上式表明当n=k+1时命题也成立.
由(1)(2)知,命题对一切正整数均成立.
点评 本题考查数学归纳法,用好归纳假设是关键,考查逻辑推理与证明的能力,属于中档题.
练习册系列答案
相关题目
10.已知全集U={1,2,3,4,5},集合A={4,5},则∁UA=( )
| A. | {5} | B. | {4,5} | C. | {1,2,3} | D. | {1,2,3,4,5} |
4.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2017(x)=( )
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
11.设a∈(0,5),且a≠1,则函数f(x)=loga(ax-1)在(2,+∞)上为单调函数的概率为( )
| A. | $\frac{9}{10}$ | B. | $\frac{4}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{10}$ |
7.已知m、n、s、t∈R*,m+n=3,$\frac{m}{s}+\frac{n}{t}=1$其中m、n是常数且m<n,若s+t的最小值 是$3+2\sqrt{2}$,满足条件的点(m,n)是椭圆$\frac{x^2}{4}+\frac{y^2}{16}=1$一弦的中点,则此弦所在的直线方程为( )
| A. | x-2y+3=0 | B. | 4x-2y-3=0 | C. | x+y-3=0 | D. | 2x+y-4=0 |