题目内容
11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.(1)判断△ABC的形状;
(2)求sin(2A+$\frac{π}{6}$)-2cos2B的取值范围.
分析 (1)由已知等式结合正弦定理化边为角,再由两角差的余弦求得sin(A-B)=0,可得A=B,则△ABC为等腰三角形;
(2)把sin(2A+$\frac{π}{6}$)-2cos2B利用两角和的正弦及降幂公式化简,得到关于A的三角函数,再由A的范围求得答案.
解答 解:(1)由acosB=bcosA,结合正弦定理可得,sinAcosB=cosAsinB,
即sinAcosB-cosAsinB=0,得sin(A-B)=0,
∵A,B∈(0,π),
∴A-B∈(-π,π),则A-B=0,
∴A=B,即△ABC为等腰三角形;
(2)sin(2A+$\frac{π}{6}$)-2cos2B=sin2Acos$\frac{π}{6}$+cos2Asin$\frac{π}{6}$-2cos2B
=$\frac{\sqrt{3}}{2}sin2A+\frac{1}{2}cos2A$-(1+cos2B)=$\frac{\sqrt{3}}{2}sin2A+\frac{1}{2}cos2A$-cos2A-1
=$\frac{\sqrt{3}}{2}sin2A-\frac{1}{2}cos2A-1$=$sin(2A-\frac{π}{6})-1$.
∵0$<A<\frac{π}{2}$,∴$-\frac{π}{6}<2A-\frac{π}{6}<\frac{5π}{6}$,
则$sin(2A-\frac{π}{6})-1$∈(-$\frac{3}{2},0$].
即sin(2A+$\frac{π}{6}$)-2cos2B的取值范围是:(-$\frac{3}{2},0$].
点评 本题考查三角函数中的恒等变换应用,考查了正弦定理和余弦定理在求解三角形中的应用,是中档题.
练习册系列答案
相关题目
1.若直线x+my-1=0与不等式组$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面区域有公共点,则实数m的取值范围是( )
| A. | [$\frac{1}{2}$,2] | B. | [$\frac{1}{3}$,3] | C. | (-∞,$\frac{1}{3}$]∪[3,+∞) | D. | (-∞,$\frac{1}{2}$]∪[2,+∞) |
2.
如图,若在矩阵OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )
| A. | 1-$\frac{2}{π}$ | B. | $\frac{2}{π}$ | C. | $\frac{2}{{π}^{2}}$ | D. | 1-$\frac{2}{{π}^{2}}$ |
19.若f(tanx)=sin2x,则f(-1)的值是( )
| A. | -sin2 | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |
3.设x,y,z是互不相等的正数,则下列等式中不恒成立的是( )
| A. | ${x^2}+\frac{1}{x^2}≥x+\frac{1}{x}$ | B. | $\sqrt{x+3}-\sqrt{x+1}≤\sqrt{x+2}-\sqrt{x}$ | C. | $|x-y|+\frac{1}{x-y}≥2$ | D. | |x-y|≤|x-z|+|y-z| |
20.已知z=($\frac{1-i}{\sqrt{2}}$)2016(i是虚数单位),则z等于( )
| A. | -1 | B. | 1 | C. | 0 | D. | i |