题目内容
已知函数fn(x)=xn(1-x)2在(
,1)上的最大值为an(n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)求证:对任何正整数n(n≥2),都有an≤
成立;
(3)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn<
成立.
| 1 |
| 4 |
(1)求数列{an}的通项公式;
(2)求证:对任何正整数n(n≥2),都有an≤
| 1 |
| (n+2)2 |
(3)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn<
| 13 |
| 27 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得fn′(x)=nxn-1(1-x)2-2xn(1-x)=(n+2)xn-1(x-1)(x-
),由此利用导数性质能求出数列{an}的通项公式.
(2)当n≥2时,欲证
≤
,只需证明(1+
)n≥4,由此能证明当n≥2时,都有an≤
成立.
(3)Sn<
+
+
+
+…+
<
+(
-
)+(
-
)+(
-
)+…(
-
),由此能证明任意正整数n,都有Sn<
成立.
| n |
| n+2 |
(2)当n≥2时,欲证
| 4nn |
| (n+2)n+2 |
| 1 |
| (n+2)2 |
| 2 |
| n |
| 1 |
| (n+2)2 |
(3)Sn<
| 4 |
| 27 |
| 1 |
| 42 |
| 1 |
| 52 |
| 1 |
| 62 |
| 1 |
| (n+2)2 |
| 4 |
| 27 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 13 |
| 27 |
解答:
解:(1)∵fn(x)=xn(1-x)2,
∴fn′(x)=nxn-1(1-x)2-2xn(1-x)
=xn-1(1-x)[n(1-x)-2x]
=(n+2)xn-1(x-1)(x-
),…(2分)
当x∈(
,1)时,由fn′(x)=0,知:x=
,…(3分)
∵n≥1,∴
∈(
,1),…(4分)
∵x∈(
,
)时,fn′(x)>0;x∈(
,1)时,fn′(x)<0;
∴f(x)在(
,
)上单调递增,在(
,1)上单调递减
∴fn(x) 在x=
处取得最大值,
即an=(
)n(
)2=
.…(6分)
(2)当n≥2时,欲证
≤
,
只需证明(1+
)n≥4,…(7分)
∵(1+
)n=
+
(
)+
(
)2+…+
•(
)n
≥1+2+
•
≥1+2+1=4,…(9分)
∴当n≥2时,都有an≤
成立. …(10分)
(3)Sn=a1+a2+…+an
<
+
+
+
+…+
<
+(
-
)+(
-
)+(
-
)+…(
-
)
=
+
-
<
.
∴对任意正整数n,都有Sn<
成立.…(13分)
∴fn′(x)=nxn-1(1-x)2-2xn(1-x)
=xn-1(1-x)[n(1-x)-2x]
=(n+2)xn-1(x-1)(x-
| n |
| n+2 |
当x∈(
| 1 |
| 4 |
| n |
| n+2 |
∵n≥1,∴
| n |
| n+2 |
| 1 |
| 4 |
∵x∈(
| 1 |
| 4 |
| n |
| n+2 |
| n |
| n+2 |
∴f(x)在(
| 1 |
| 4 |
| n |
| n+2 |
| n |
| n+2 |
∴fn(x) 在x=
| n |
| n+2 |
即an=(
| n |
| n+2 |
| 2 |
| n+2 |
| 4nn |
| (n+2)n+2 |
(2)当n≥2时,欲证
| 4nn |
| (n+2)n+2 |
| 1 |
| (n+2)2 |
只需证明(1+
| 2 |
| n |
∵(1+
| 2 |
| n |
| C | 0 n |
| C | 1 n |
| 1 |
| 2 |
| C | 2 n |
| 2 |
| n |
| C | n n |
| 2 |
| n |
≥1+2+
| n(n-1) |
| 2 |
| 4 |
| n2 |
∴当n≥2时,都有an≤
| 1 |
| (n+2)2 |
(3)Sn=a1+a2+…+an
<
| 4 |
| 27 |
| 1 |
| 42 |
| 1 |
| 52 |
| 1 |
| 62 |
| 1 |
| (n+2)2 |
<
| 4 |
| 27 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 4 |
| 27 |
| 1 |
| 3 |
| 1 |
| n+2 |
| 13 |
| 27 |
∴对任意正整数n,都有Sn<
| 13 |
| 27 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目