题目内容

18.已知向量$\overrightarrow{m}$=(2x,7),$\overrightarrow{n}$=(6,x+4),若$\overrightarrow{m}$∥$\overrightarrow{n}$且$\overrightarrow{m}$≠$\overrightarrow{n}$,则x的值为(  )
A.-7或3B.-3或7C.-7D.3

分析 利用向量共线的充要条件列出方程,求解即可.

解答 解:向量$\overrightarrow{m}$=(2x,7),$\overrightarrow{n}$=(6,x+4),若$\overrightarrow{m}$∥$\overrightarrow{n}$且$\overrightarrow{m}$≠$\overrightarrow{n}$,
可得2x(x+4)=42,
解得x=-7,x=3(舍去).
故选:C.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网