题目内容

8.已知函数f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,若g(m)=f(n)成立,则n-m的最小值为(  )
A.1-ln2B.ln2C.2$\sqrt{e}$-3D.e2-3

分析 根据g(m)=f(n)=t得到m,n的关系,利用消元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.

解答 解:不妨设g(m)=f(n)=t,
∴em-2=ln$\frac{n}{2}$+$\frac{1}{2}$=t,(t>0)
∴m-2=lnt,m=2+lnt,n=2•e${\;}^{t-\frac{1}{2}}$
故n-m=2•e${\;}^{t-\frac{1}{2}}$-2-lnt,(t>0)
令h(t)=2•e${\;}^{t-\frac{1}{2}}$-2-lnt,(t>0),
h′(t)=2•e${\;}^{t-\frac{1}{2}}$-$\frac{1}{t}$,易知h′(t)在(0,+∞)上是增函数,且h′($\frac{1}{2}$)=0,
当t>$\frac{1}{2}$时,h′(t)>0,
当0<t<$\frac{1}{2}$时,h′(t)<0,
即当t=$\frac{1}{2}$时,h(t)取得极小值同时也是最小值,
此时h($\frac{1}{2}$)=2•e${\;}^{\frac{1}{2}-\frac{1}{2}}$-2-ln$\frac{1}{2}$=2-2+ln2=ln2,即n-m的最小值为ln2;
故选:B

点评 本题主要考查导数的应用,利用消元法进行转化,构造函数,求函数的导数,利用导数研究函数的极值和最值是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网