题目内容
19.设等比数列{an}的前n项和为Sn,且S3=$\frac{7}{3}$,a2=$\frac{2}{3}$,a1<a2,则数列{nan}的前n项和为Tn=$\frac{(n-1)•{2}^{n}+1}{3}$.分析 设等比数列{an}公比为q,由题意可得首项和公比的方程组,解方程组由等比数列的通项公式,代入数列{nan},再由错位相减法得答案.
解答 解:设等比数列{an}公比为q,
由a2=$\frac{2}{3}$,S3=$\frac{7}{3}$,得a2=$\frac{2}{3}$,a1+a3=$\frac{5}{3}$,
由等比数列的通项公式可得$\left\{\begin{array}{l}{{a}_{1}q=\frac{2}{3}}\\{{a}_{1}+{a}_{1}{q}^{2}=\frac{5}{3}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{3}}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=\frac{4}{3}}\\{q=\frac{1}{2}}\end{array}\right.$,
∵a1<a2,∴$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{3}}\\{q=2}\end{array}\right.$,
∴an=$\frac{1}{3}×{2}^{n-1}$,
则nan=$\frac{n}{3}×{2}^{n-1}$.
∴Tn=$\frac{1}{3}$(1•20+2•21+…+n•2n-1),
$2{T}_{n}=\frac{1}{3}(1•{2}^{1}+2•{2}^{2}+…+n•{2}^{n})$,
两式作差得$-{T}_{n}=\frac{1}{3}(1+{2}^{1}+{2}^{2}+…+{2}^{n-1}-n•{2}^{n})$=$\frac{1}{3}(\frac{1×(1-{2}^{n})}{1-2}-n•{2}^{n})$=$\frac{1}{3}({2}^{n}-1-n•{2}^{n})$.
∴${T}_{n}=\frac{(n-1)•{2}^{n}+1}{3}$.
故答案为:$\frac{(n-1)•{2}^{n}+1}{3}$.
点评 本题考查数列递推式,考查了错位相减法求数列的前n项和,属中档题.
| A. | {x<5} | B. | {1,2,3,4} | C. | {0,1,2,3,4,5} | D. | {1,2,3,4,5} |
| A. | 200 | B. | 160 | C. | 120 | D. | 100 |
| A. | y=sin2x-cos2x | B. | y=sin2x+cos2x | C. | y=sin2x-2cosx | D. | y=sin2x+2cosx |
| A. | x2+y2-4x+6y-8=0 | B. | x2+y2-4x+6y+8=0 | C. | x2+y2+4x-6y-8=0 | D. | x2+y2+4x-6y+8=0 |
| A. | $\frac{1}{9}$ | B. | 9 | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |